Mathematics & Statistics for Machine Learning | Udemy


Mathematics & Statistics for Machine Learning | Udemy
English | Size:
Genre: eLearning

What you’ll learn
You will understand the fundamentals of mathematics and statistics relevant for machine learning
You will gain insights on the application of math and stats on machine learning
You will know what problems Machine Learning can solve, and how the Machine Learning Process works
You will learn Measures of Central Tendency vs Dispersion
You will understand Mean vs Standard Deviation & Percentiles
You will have clarity on the Types of Data & Dependent vs independent variables
You will be knowledgeable on Probability & Sample Vs population
You will gain clarity on Hypothesis testing
You will learn the Types of distribution & Outliers
You will understand the maths behind algorithms like regression, decision tree and kNN
You will gain insights on optimization and gradient descent

The trainer of this course is an AI expert and he has observed that many students and young professionals make the mistake of learning machine learning without understanding the core concepts in maths and statistics. This course will help to address that gap in a big way.

Since Machine Learning is a field at the intersection of multiple disciplines like statistics, probability, computer science, and mathematics, its essential for practitioners and budding enthusiasts to assimilate these core concepts.

These concepts will help you to lay a strong foundation to build a thriving career in artificial intelligence.

This course teaches you the concepts mathematics and statistics but from an application perspective. It’s one thing to know about the concepts but it is another matter to understand the application of those concepts. Without this understanding, deploying and utilizing machine learning will always remain challenging.

You will learn concepts like measures of central tendency vs dispersion, hypothesis testing, population vs sample, outliers and many interesting concepts. You will also gain insights into gradient decent and mathematics behind many algorithms.

We cover the below concepts in this course:

Measures of Central Tendency vs Dispersion

Mean vs Standard Deviation

Percentiles

Types of Data

Dependent vs independent variables

Probability

Sample Vs population

Hypothesis testing

Concept of stability

Types of distribution

Outliers

Maths behind machine learning algorithms like regression, decision tree and kNN

Gradient descent.

Who this course is for:
Data Scientists, Python Programmers, ML Practitioners, IT Managers managing data science projects

nitroflare.com/view/86ECF19EF1CFB39/Mathematics-Statistics-for-Machine-Learning.3.3.part1.rar
nitroflare.com/view/E04DB31086FD573/Mathematics-Statistics-for-Machine-Learning.3.3.part2.rar

rapidgator.net/file/adaa2f81c1a38e1f03b3fae19f969543/Mathematics-Statistics-for-Machine-Learning.3.3.part1.rar.html
rapidgator.net/file/04b6ba5dcbae2c62e7ccd4735e115f85/Mathematics-Statistics-for-Machine-Learning.3.3.part2.rar.html

If any links die or problem unrar, send request to
forms.gle/e557HbjJ5vatekDV9

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.